Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a,b }}$ * Da-Qi Wang ${ }^{a}$ and Tao Yu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.049$
$w R$ factor $=0.070$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(ethylenediamine- $\kappa^{2} N, N^{\prime}$)zinc(II) bis(1,2-di-cyanoethylenedithiolato- $\kappa^{2} S, S^{\prime}$) nickelate(II)

The title complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$, contains a $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]^{2+}$ complex cation with a distorted octahedral coordination of the Zn atom and an $\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]^{2-}$ anion with a slightly distorted square-planar geometry for the $\mathrm{Ni}^{\mathrm{II}}$ atom. The cation occupies a special position on a twofold axis, whereas the anion lies about a crystallographic inversion centre.

Comment

The crystal structure of the title compound, (I), is built of $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ complex cations and $\left[\mathrm{Ni}(\mathrm{mnt})_{2}\right]^{2-}$ complex anions (en is ethylenediamine, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, and mnt = deprotonated 1,2-dicyanoethylenedithiolate, $\left.\left[\mathrm{S}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}\right]^{2-}\right)$. The cation occupies a special position on a twofold axis, whereas the anion is located on a crystallographic inversion centre. The structures of cation and anion are shown in Fig. 1.

(I)

The central $\mathrm{Zn}^{\mathrm{II}}$ atom in the $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cation has a distorted octahedral geometry, formed by six N atoms of the three bidentate en ligands. The two symmetry-independent trans angles for the Zn 1 octahedron are 169.4 (2) and $172.59(18)^{\circ}$, chelate bite $\mathrm{N}-\mathrm{Zn} 1-\mathrm{N}$ angles within the en ligands are 79.6 (3) and $80.66(17)^{\circ}$, and the remaining angles in the Zn 1 octahedron span the range 92.0 (2)-95.4 (2) ${ }^{\circ}$. The average $\mathrm{Zn}-\mathrm{N}$ bond length of $2.156 \AA$ is comparable to the value of $2.181 \AA$ observed earlier in another $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cationic complex (Fu et al., 2004).

Atom Ni1 in the $\left[\mathrm{Ni}(\mathrm{mnt})_{2}\right]^{2-}$ anion has a slightly distorted square planar environment, with an endocylic $\mathrm{S} 1-\mathrm{Ni} 1-\mathrm{S} 2$ chelate bite angle of $87.70(6)^{\circ}$ and an exocyclic angle $\mathrm{S} 1-$ Ni1 $-\mathrm{S}^{\text {iv }}$ of $92.30(5)^{\circ}$ [symmetry code: (iv) $\frac{3}{2}-x, \frac{3}{2}-y$, $1-z$]; the $\mathrm{Ni} 1-\mathrm{S} 1$ and $\mathrm{Ni} 1-\mathrm{S} 2$ bonds are almost identical [2.1693 (14) and 2.1722 (15) Å, respectively].

There are no particularly short interionic contacts in the structure, the shortest $\mathrm{Ni} \cdots \mathrm{N}$ distance being 3.437 (5) \AA [Ni1 $\cdots \mathrm{N} 4^{\mathrm{v}}$; symmetry code: (v) $1+x, 1-y, z-\frac{1}{2}$]. The interionic $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ contacts may be regarded as rather weak hydrogen bonds (Table 1 and Fig. 2)

Received 8 October 2004 Accepted 15 November 2004 Online 27 November 2004

Experimental

$\mathrm{H}_{2} \mathrm{mnt}(1.00 \mathrm{mmol})$ and $\mathrm{NaOH}(2.00 \mathrm{mmol})$ were dissolved in ethanol $(20 \mathrm{ml}) .1 .5 \mathrm{mmol}$ of en and an ethanol solution $(30 \mathrm{ml})$ of $\mathrm{ZnSO}_{4}(0.5 \mathrm{mmol})$ and $\mathrm{NiSO}_{4}(0.5 \mathrm{mmol})$ were added dropwise to this solution at 313 K . The mixture was stirred for 6 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and left in the air for about 13 d . Large red block-shaped crystals of (I) were obtained. Elemental analysis found: C 28.58, H 4.06, N 23.79, S 21.81\%; calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{10} \mathrm{NiS}_{4} \mathrm{Zn}$: C 28.76, H 4.14, N 23.95, S 21.93\%.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$

$M_{r}=584.75$

Monoclinic, $C 2 / c$
$a=8.7430$ (10) \AA
$b=17.0087$ (19) \AA
$c=16.3138$ (17) \AA
$\beta=98.982$ (3) ${ }^{\circ}$
$V=2396.2(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 1997)
$T_{\min }=0.558, T_{\max }=0.774$
6159 measured reflections

Refinement

Refinement on F^{2}
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0064 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.49 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.48$ e \AA^{-3}

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3B \cdots N2 ${ }^{\text {i }}$	0.90	2.70	3.590 (7)	171
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 1^{\text {ii }}$	0.90	2.31	3.208 (6)	175
N5-H5A \cdot S $2^{\text {iii }}$	0.90	2.81	3.696 (5)	169
$\mathrm{N} 5-\mathrm{H} 5 B \cdots \mathrm{~N} 1^{\text {ii }}$	0.90	2.57	3.331 (6)	142

Symmetry codes: (i) $x-1, y, z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$.
All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figure 1
The cation and anion in the structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted. Unlabelled atoms in the cation are related by the symmetry code $-x, y, \frac{3}{2}-z$. Unlabelled atoms in the anion are related by the symmetry code $\frac{3}{2}-x, \frac{3}{2}-y, 1-z$.

Figure 2
The crystal packing of (I), showing the $\mathrm{Ni} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions as dashed lines; the view is along the a axis.

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Fu, A.-Y., Wang, D.-Q. \& Yu, T. (2004). Acta Cryst. E60, m1736-m1737. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

