Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu,^{a,b}* Da-Qi Wang^a and Tao Yu^a

^aDepartment of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ^bDepartment of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.009 Å R factor = 0.049 wR factor = 0.070 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Tris(ethylenediamine- $\kappa^2 N, N'$)zinc(II) bis(1,2-dicyanoethylenedithiolato- $\kappa^2 S, S'$)nickelate(II)

The title complex, $[Zn(C_2H_8N_2)_3][Ni(C_4N_2S_2)_2]$, contains a $[Zn(C_2H_8N_2)_3]^{2+}$ complex cation with a distorted octahedral coordination of the Zn atom and an $[Ni(C_4N_2S_2)_2]^{2-}$ anion with a slightly distorted square-planar geometry for the Ni^{II} atom. The cation occupies a special position on a twofold axis, whereas the anion lies about a crystallographic inversion centre.

Comment

The crystal structure of the title compound, (I), is built of $[Zn(en)_3]^{2+}$ complex cations and $[Ni(mnt)_2]^{2-}$ complex anions (en is ethylenediamine, H₂NCH₂CH₂NH₂, and mnt = deprotonated 1,2-dicyanoethylenedithiolate, $[S_2C_2(CN)_2]^{2-}$). The cation occupies a special position on a twofold axis, whereas the anion is located on a crystallographic inversion centre. The structures of cation and anion are shown in Fig. 1.

The central Zn^{II} atom in the $[Zn(en)_3]^{2+}$ cation has a distorted octahedral geometry, formed by six N atoms of the three bidentate en ligands. The two symmetry-independent *trans* angles for the Zn1 octahedron are 169.4 (2) and 172.59 (18)°, chelate bite N-Zn1-N angles within the en ligands are 79.6 (3) and 80.66 (17)°, and the remaining angles in the Zn1 octahedron span the range 92.0 (2)–95.4 (2)°. The average Zn-N bond length of 2.156 Å is comparable to the value of 2.181 Å observed earlier in another $[Zn(en)_3]^{2+}$ cationic complex (Fu *et al.*, 2004).

Atom Ni1 in the $[Ni(mnt)_2]^{2-}$ anion has a slightly distorted square planar environment, with an endocylic S1-Ni1-S2 chelate bite angle of 87.70 (6)° and an exocyclic angle S1-Ni1-S2^{iv} of 92.30 (5)° [symmetry code: (iv) $\frac{3}{2} - x$, $\frac{3}{2} - y$, 1 - z]; the Ni1-S1 and Ni1-S2 bonds are almost identical [2.1693 (14) and 2.1722 (15) Å, respectively].

There are no particularly short interionic contacts in the structure, the shortest Ni···N distance being 3.437 (5) Å [Ni1···N4^v; symmetry code: (v) 1 + x, 1 - y, $z - \frac{1}{2}$]. The interionic N-H···N and N-H···S contacts may be regarded as rather weak hydrogen bonds (Table 1 and Fig. 2)

Received 8 October 2004 Accepted 15 November 2004 Online 27 November 2004

Experimental

H₂mnt (1.00 mmol) and NaOH (2.00 mmol) were dissolved in ethanol (20 ml). 1.5 mmol of en and an ethanol solution (30 ml) of ZnSO₄ (0.5 mmol) and NiSO₄ (0.5 mmol) were added dropwise to this solution at 313 K. The mixture was stirred for 6 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and left in the air for about 13 d. Large red block-shaped crystals of (I) were obtained. Elemental analysis found: C 28.58, H 4.06, N 23.79, S 21.81%; calculated for $C_{14}H_{24}N_{10}NiS_4Zn$: C 28.76, H 4.14, N 23.95, S 21.93%.

 $D_x = 1.621 \text{ Mg m}^{-3}$

reflections

 $\begin{array}{l} \theta = 2.7 {-} 18.0^{\circ} \\ \mu = 2.16 \ \mathrm{mm}^{-1} \end{array}$

T = 295 (2) K

Block, red

 $R_{\text{int}} = 0.071$ $\theta_{\text{max}} = 25.0^{\circ}$ $h = -9 \rightarrow 10$ $k = -13 \rightarrow 20$ $l = -19 \rightarrow 17$

Cell parameters from 843

 $0.30 \times 0.23 \times 0.12 \text{ mm}$

2120 independent reflections 1039 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0064P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.49 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.48 \text{ e } \text{\AA}^{-3}$

Crystal data

 $[Zn(C_2H_8N_2)_3][Ni(C_4N_2S_2)_2]$ $M_r = 584.75$ Monoclinic, C2/c a = 8.7430 (10) Å b = 17.0087 (19) Å c = 16.3138 (17) Å $\beta = 98.982$ (3)° V = 2396.2 (5) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\min} = 0.558, T_{\max} = 0.774$
6159 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.070$ S = 1.002120 reflections 136 parameters

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H3B\cdots N2^{i}$	0.90	2.70	3.590 (7)	171
$N4-H4B\cdots N1^{ii}$	0.90	2.31	3.208 (6)	175
N5-H5 A ···S2 ⁱⁱⁱ	0.90	2.81	3.696 (5)	169
$N5-H5B\cdots N1^{ii}$	0.90	2.57	3.331 (6)	142
$N5-H5B\cdots N1^{ii}$	0.90	2.57	3.331 (6)	

Symmetry codes: (i) x - 1, y, z; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (iii) $x - \frac{1}{2}, y - \frac{1}{2}, z$.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, and N-H = 0.90 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Figure 1

The cation and anion in the structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted. Unlabelled atoms in the cation are related by the symmetry code -x, y, $\frac{3}{2} - z$. Unlabelled atoms in the anion are related by the symmetry code $\frac{3}{2} - x$, $\frac{3}{2} - y$, 1 - z.

Figure 2

The crystal packing of (I), showing the Ni \cdots N, N-H \cdots S and N-H \cdots N interactions as dashed lines; the view is along the *a* axis.

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, A.-Y., Wang, D.-Q. & Yu, T. (2004). Acta Cryst. E60, m1736-m1737.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.